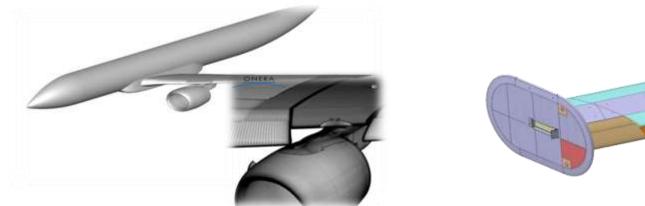
FIRST WORKSHOP

Aerodynamic Design and System Development of Synthetic Jet Actuation for Flow Control at the Engine/Wing Junction

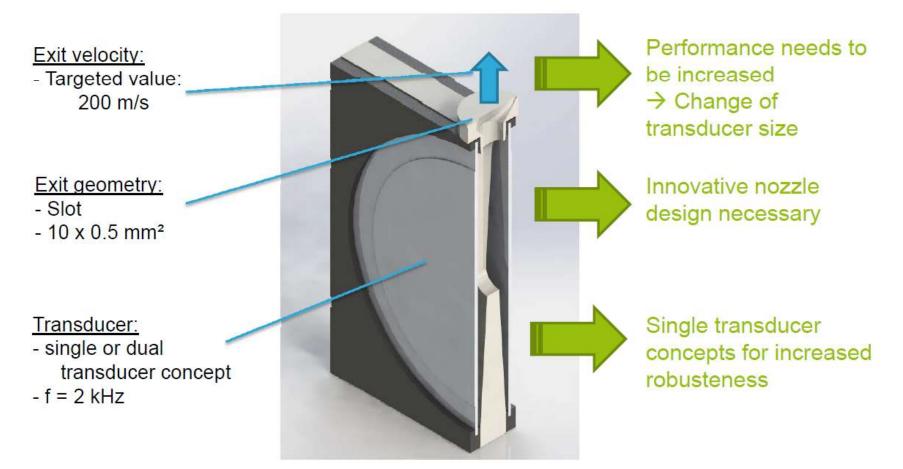
M. Schueller, H. Schippers, B. Stefes, T. ter Meer, P. Weigel, P. Vrchota, S. Wallin, M. Meyer

2ND GENERATION ACTIVE WING Delft, September 10, 2015 Presenter: H. Schippers (NLR)


Outline of presentation

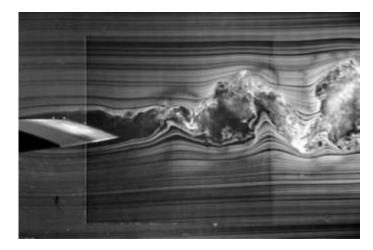
- Background
- Synthetic Jet Actuator (SJA) concept
- High frequency SJAs for flow control (example)
- Aerodynamic design of SJA system for Wing-Pylon-Nacelle configuration
- Aerodynamic modelling of SJAs
- Aerodynamic analysis of SJAs
- System development
- Development of SJAs
- Development of High Voltage Amplifier (HVA) unit
- Conclusions

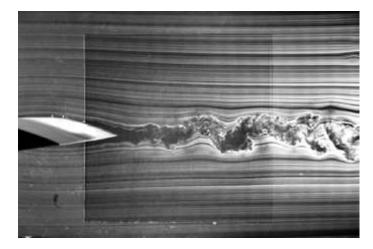
- Scope:
- Application of **Synthetic Jet Actuators (SJAs)** for Active Control of Flow around Wing-Pylon-Nacelle configuration
- Motivation: Active Flow Control as Enabler for UHBR Turbofans


• Objectives:

- To mature Active Flow Control technologies: suppress nacelle-wake separation by Pulsed Jet and **Synthetic Jet Actuation**
- To investigate performance of SJAs by aerodynamic simulations
- To develop system integration concepts accounting for real aircraft constraint & requirements
- To demonstrate technology in large scale WT model

Synthetic Jet Actuator (SJA) concept


First concept studies with slot geometry



High frequency SJA for flow control

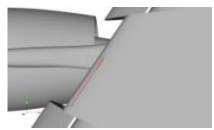
- **Objective:** to reattach separated flow, to increase lift and to decrease drag
- Example from recent literature (Goodfellow, AIAA journal, 2013):
 - Application high frequency SJAs for flow control to 2D flow
 - Re-attachment of flow around a NACA 0025 airfoil (at a chord-based Reynolds number of 100,000 and an angle of attack of 5 degrees)

uncontrolled

$$C_{\mu} = 0.3\%$$

• Design parameters:

- Excitation frequency, Excitation location, Excitation amplitude, Number of excitation jets
- Control parameter: Dimensionless momentum coefficient C_{μ}


Aerodynamic design for SJA system in WT model

Positioning of SJA slots

- \ 85 of actuators placed 0.021%c from the leading edge between the inboard and outboard slat
- \ 2nd row is placed 0.021%c downstream of 1st row

2

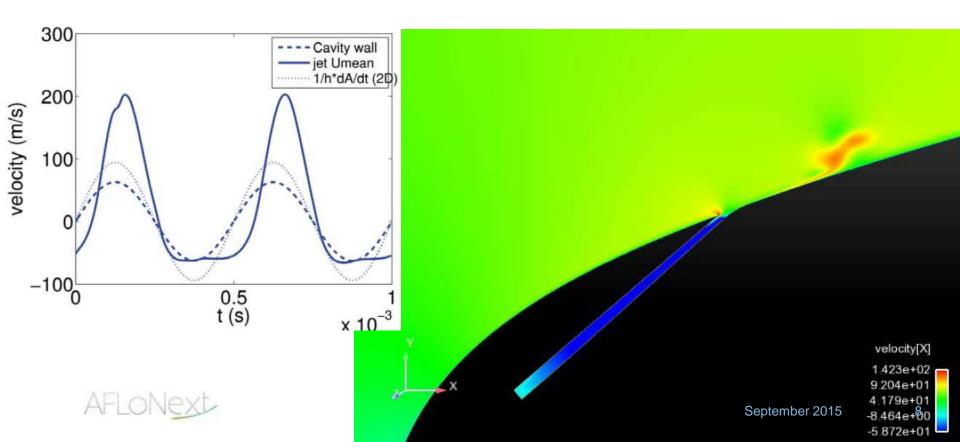
- \ Length 0.83 m
- \ Circular area outlet 5mm²
- \ Pitch angle 30deg

Two strake positions on nacelle

1

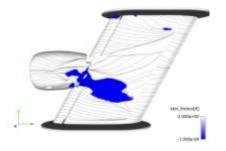
Aerodynamic modeling of SJA

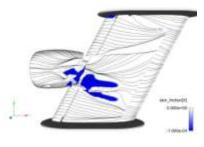
- 3D steady computations using steady model of SJA
- with averaged forcing conditions for momentum, energy, K and ω
- same computational effort as for steady RANS
- same mesh as for steady clean RANS can be used (no slot or cavity)
- Resolved 2D URANS (2000Hz) with pumping cavity
- for calibration of SJA forcing model


AHO

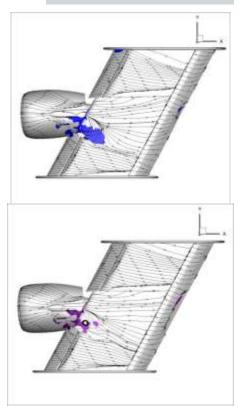
note the asymmetric outlet velocity in time

2D synthetic jet simulation


- Extracting/contracting mesh cavity
- Slot exit width: 0.5 mm
- Frequency 2000 Hz
- Umax = 200 m/s


CFD results

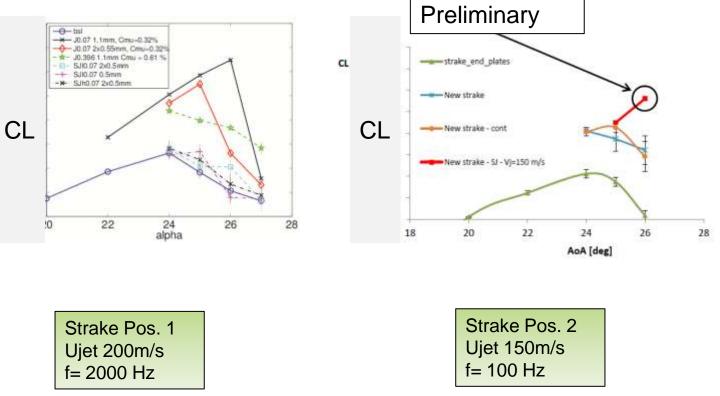
FOI results


Baseline and strake

With two rows of SJAs

VZLU results

With one row of SJAs

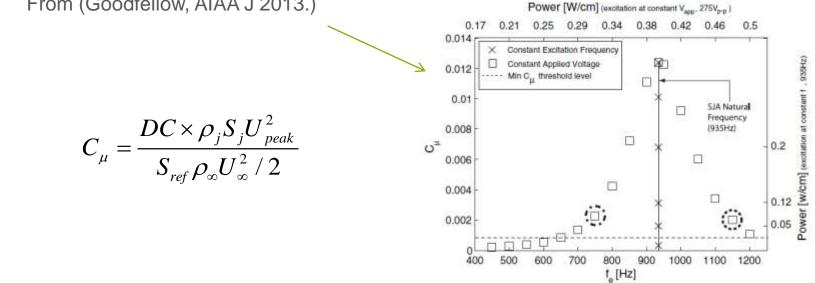

Strake Pos. 1 AoA – 27 degr Ujet 200m/s f= 2000 Hz

Strake Pos. 2 AoA – 26 degr Ujet 150m/s f= 100 Hz

CFD results

CL vs. AoA

Conclusions:


- Slight improvement of lift is observed
- No unsteady RANS results available for f=2000Hz

AFLONext

Aerodynamic analysis

Momentum coefficient

- For synthetic jets excitation amplitude is commonly characterized by the momentum . coefficient
- From (Goodfellow, AIAA J 2013.) •

- A substantial decrease in drag is attained only when synthetic jet actuation is applied at a • sufficiently high amplitude
- Momentum coefficient should be larger than 0.3% (referred as Goodfellow threshold) •

Aerodynamic analysis

Momentum coefficient for WT model

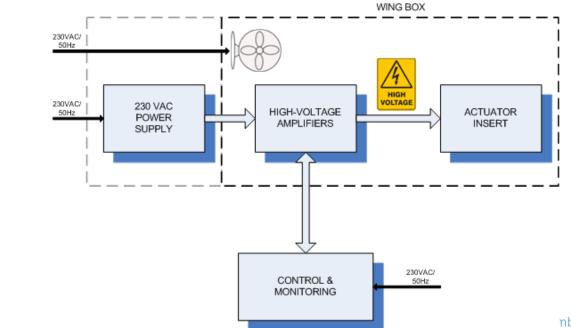
• Active Control of Flow around Wing-Pylon-Nacelle configuration

• Assumptions: DC=0.5;
$$\rho_j = \rho_{\infty}$$
 $C_{\mu} = \frac{DC \times \rho_j S_j U_{peak}^2}{S_{ref} \rho_{\infty} U_{\infty}^2 / 2} = \frac{S_j U_{peak}^2}{S_{ref} U_{\infty}^2}$

$$S_i$$
 = number of slots x area slot = $80 * 5 * 10^{-6} \text{ m}^2$

$$S_{ref} >= 3 \text{ m}^2$$
 $U_{peak} = 200 \text{ m/s}$ and $U_{\infty} = 51 \text{ m/s}$

- Then $C_{\mu} \approx 0.2\%$ is just below the Goodfellow threshold for $U_{peak} = 200 \text{ m/s}$
- This value is much lower than the threshold for Pulsed Jet Actuators (requires 1.76 %)

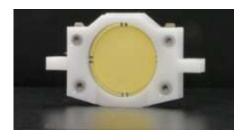


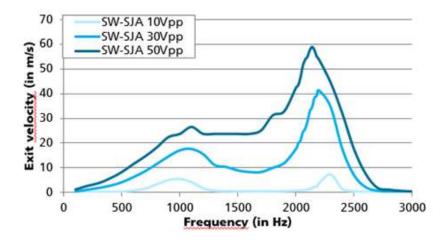
12

System development

Active flow control by means SJA's requires:

- 1. Development of stackable array of SJA's
- 2. Development of High-Voltage amplifier unit to drive SJA's
- 3. Control system
- 4. Several sensors to measure performance of SJAs
- 5. Development of specific insert in WT model

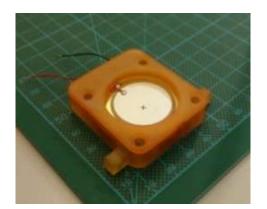



Development of SJAs

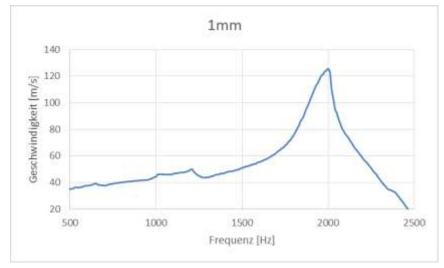
Stackable Synthetic Jet Actuators

- Designed for very compact integration
- Models with single and dual transducers available

Characterization results (method: aneometry)

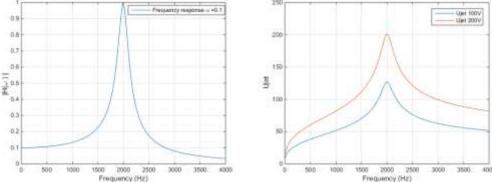


Development of SJAs


High Power Synthetic Jet Actuators

- Designed for increased power density
- Compact integration is possible
- Different exit geometries available

SJA Prototype



Development of SJA system

Peak velocity can be estimated by the following formula

$$u_{peak} = \sqrt[3]{\frac{\eta \omega c V^2}{a\rho} |H(\omega)|}$$

Assume f = 2000 Hz ($\omega = 2\pi f$), c = 200 nF, V = 200 Volt, slot area a = 0.000005, $\rho = 1.22 \text{ kg/m}^3$. Then, the exit peak velocity u_{peak} at the nozzle becomes 200 m/s.

- Challenge 1: To attain an exit velocity of 200 m/s the applied voltage has to be at least 200 Volt
- Challenge 2: To pass the Goodfellow threshold (the momentum coefficient should be larger than 0.3%)
- Challenge 3: To develop an integrated stack of equivalent actuators with the same resonant frequency

AFLONext

Development High Voltage Amplifier (HVA) unit

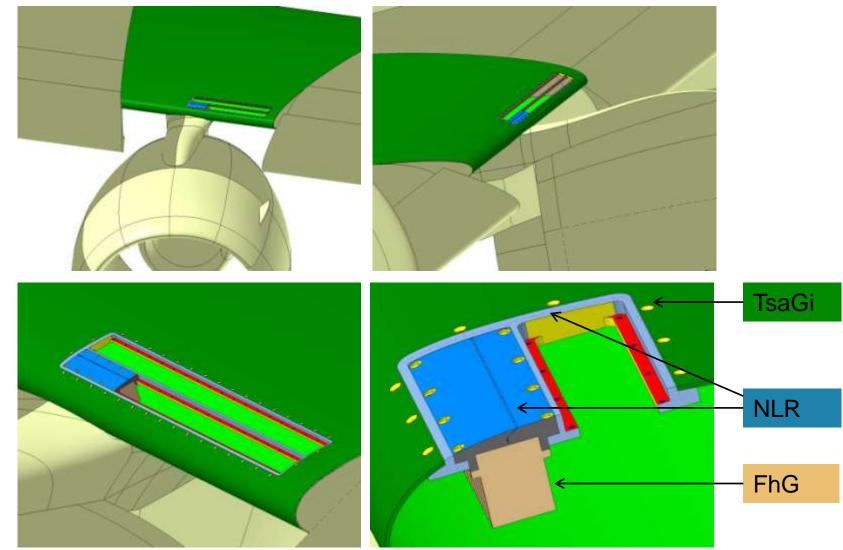
- Market survey for drivers of piezo transducers
- Most suitable HVA: PiezoDrive MX200
 - Can drive 6 SJAs @ 100 Vpp, 2 kHz
 - Can drive 1 SJA @ 200 Vpp, 2kHz
 - Acceptable size
 - Internal HV power supply
 - Forced air flow fan (weak point)

Specifications				
Power Supply	24V (18V to 36V)			
Voltage Range	+100V, +150V, or +200 V			
Peak Current	1 Amp			
RMS Current	550 mA, 330 mA, 220 mA			
Power Bandwidth	106 kHz (180 Vp-p)			
Signal Bandwidth	200 kHz (100nF Load)			
Slew Rate	60 V/us			
Gain	20 V/V			
Input Impedance	33 $k\Omega$ (In+), 1.6 $k\Omega$ (In-)			
Input Offset	\pm 5 mV			
Load	Unlimited			
Output Noise	<100 uV RMS (10Hz to 10kHz)			
Protection	Short-circuit, average current, and under-voltage protection			
Quiescent Current	0.3 A (30 mA in Shutdown)			
Dimensions	80 x 46 x 40 mm (L x W x H)			
Environment	-40 to 60°C (-40 to 140°F) Non-condensing humidity			
Weight	95 g			

HVA unit at system level

# of SJA	Required V_pp	#SJAs/ (Amlpifier)	#Amplifiers	Estimated power (W)	Estimated mass amplifiers (kg)	Estimated volume amplifiers (liters)
85	100	5	17	600	2	3
85	150	2	43	1500	5	7
85	200	1	85	3000	9	13
169	100	5	34	1200	4	6
169	150	2	85	3000	9	13
169	200	1	169	6000	17	26

Amplifiers have to embedded in standard subracks *Mounting in the wing box*


Schroff 19"/3U subrack

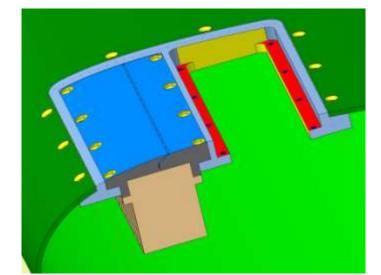
NAME AND ADDRESS OF TAXABLE PARTY.

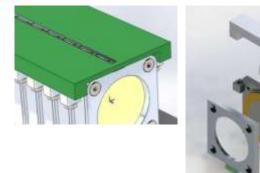
and a second state of the second seco

Development of insert in WT model (NLR)

Development of insert in WT model

Proposed insert consists of two main parts:


- Frame (NLR)
- Set of actuators with top cover (FhG)


Frame:

- Aluminium alloy one or two rows
- Mounted separately in the wing box
- Also reinforces the wing box
- Flat top surface ⇒ mounting from <u>below</u>
- Mechanical interface with WT hardware

Actuator set:

- Aluminum top cover
- Individual actuators can be replaced easily from the top side

Conclusions

- Aerodynamic analysis and CFD simulations:
 - No unsteady CFD results available for f=2000Hz
 - 3D steady EARSM of FOI does not show benefits of SJAs
 - 3D steady EARSM code has not been validated for unsteady jet calculations (only calibrated against 2D unsteady calculations)
 - 3D unsteady code of VZLU is only applied for f=100Hz
 - Challenge: The pass of Goodfellow threshold (momentum coefficient should be larger than 0.3%) requires exit jet velocities of 200 m/s

Development of SJAs

- Jet velocity of presently available SJAs is too low
- SJAs have to be driven at resonant frequency (present stack shows scattering of resonant frequencies)
- The amount of energy provided by one SJA is limited (~~ 0.001 Joule)
- Challenge: To attain SJAs with exit velocity of 200 m/s (requires use of High Voltage Amplifiers)
- Challenge: To develop an integrated stack of equivalent actuators with the same resonant frequency

- Development of High Voltage Amplifiers
 - Challenge: To attain an exit velocity of 200 m/s the applied voltage has to be at least 200 Volt
 - This requires the use of one PiezoDrive MX200 for each SJA (total 85)
 - Challenge: The integration of 85 MX200 drives on Printed circuit boards and the embedding in subracks (8 subracks are required)
 - Commercial available MX200 PiezoDrives are bulky (too heavy for installation in real aircraft)
- Design of insert
 - SJA system can be replaced from top side

For more information:

Contact :

- \ H. Schippers (Harmen.Schippers@nlr.nl)
- **** National Aerospace Laboratory NLR

Or Contact@AFLonext.eu

23

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 604013, AFLONEXT project.

24